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We investigate the dynamics of ensembles of diffusive defects in one-dimensional 
deterministic cellular automata. The work builds on earlier results on individual 
random walks in cellular automata. Here we give a natural condition guarantee- 
ing diffusive behavior also in the presence of other defects. Simple branching 
and birth mechanisms are introduced and prototype classes of cellular automata 
exhibiting weakly interacting walks capable of annihilation and coalescence are 
studied. Their equilibrium behavior is also characterized. The design principles 
of cellular automata with desired diffusive interaction properties become trans- 
parent from this analysis. 

KEY W O R D S :  Cellular automaton; permutivity; topological defect; random 
walk. 

INTRODUCTION 

Topological defects, Bloch walls, or contours can be identified in a number 
of standard lattice models in statistical mechanics. They are boundaries 
between adjacent domains/phases and since their motions determine the 
macroscopic properties of the medium to a large extent their analysis has 
attained a central position in the discipline/8'3'151 

Cellular automata (CA), being a discretized form of lattice dynamics, 
are believed to share common properties with numerous statistical 
mechanics models. 19'~-I While introducing some novelty and simplicity, 
their purely discrete and deterministic nature also introduces combinatorial 
difficulties in the analysis in comparison to the standard probabilistic 
models. 
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In this study we investigate large classes of deterministic one-dimen- 
sional CA which exhibit surprisingly "physics-like" phenomena in the 
aforementioned sense. In particular they support phase boundaries per- 
forming random walks. The basic phenomenology as well as complete and 
rigorous characterization of individual motions were the subject of our 
earlier work. 15'61 Here the focus is on ensembles of interacting random 
walks which either were originally present or are born from vacuum or 
branch from existing ones at a given rate. In contact interaction they 
recombine either by annihilating or coalescing, depending on their types. 
We single out prototype classes of partially permutive CA where the 
interaction is weak enough so that the global action is still diffusive and 
analyzable. It turns out that the behavior of the CA is quite predictable 
from the design. This by itself is novel in the context of CA, where com- 
binatorial details often tends to erase any continuity from the parameters. 
Hence it is perhaps justified to view our setup and parametrizations as 
natural for the problem. 

Indeed our claim is that the structures unveiled here are the very 
reason why the commonly used notion "statistical mechanics of CA" makes 
sense. 

One could also view the results as an ideal way of generating 
pseudorandom lattice dynamics. This is because by their very nature CA 
are computationally extremely efficient and just seed randomness is needed 
to be injected using standard algorithms. 

The work is structured as follows. We first note the basic definitions 
and dynamics types. In Section 2 we define the prototype classes of CA. 
This involves the key reformulation of a CA rule which essentially decodes 
it to a stationary process and a symbolic flow on it. In this setup the 
motion as well as the branching properties of an individual boundary point 
have natural characterizations. The critical permutivity property of the 
underlying dynamics is then connected to some recent investigations on 
Z2-actions. 

In the beginning of Section 3 we present some empirical results con- 
cerning the classes under consideration in the various cases involving 
different birth and branching intensities. These results are then compared 
with predictions of probabilistic models derived using Feynman-type path 
decomposition and independence assumptions. The conservation laws 
inevitable in the context of deterministic CA are then analyzed. Finally we 
formulate a conjecture related to the equilibrium states of the classes. The 
conjecture is connected to earlier work on simpler dynamics with stronger 
assumptions. Along the way, we also discuss the dynamics resulting from 
relaxing the permutivity structure, quenching the seed randomness, etc. 
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1. PRELIMINARIES 

The presentation here is a rather terse but still self-contained. Elabora- 
tion on the basic concepts can be found in earlier parts of  this paper 
sequence. 15-6~ 

Let S be a finite set of symbols and X = _ S = S  z and XI~/2~= 
S_~"~-~= S z+ ~/~- the sets of configurations. If the left shift tr is defined for any 
x �9 X t ~ by (ax)j  = xj+ ~, then we can define our  object of study. 

Definition 1.1.  A m a p f : S x S - , S  on neighboring symbols is a 
celhdar automaton r,de. It commutes  with the left shift and thereby induces 
a global cellular automaton map F: X-. X ~l/~-~ and F:  X c l / ' - ~  X. 

Every one-dimensional CA is of this form. ~5~ 

Definition 1.2.  A set S t"~ c S is called right-&variant iff(s, S c"~) = S I'~ 
for all s �9 S I"~, i.e., f ( s , .  ) is  a permutation on S I"~. Left invariance is defined 
in a symmetric fashion. If the permutivity holds on both sides, the map is 
permutive on S ~'~. 

The index in S t~ refers to our  convention that S splits into sub- 
alphabets. We denote their set by A = {0, 1 .... }. To obtain necessary closure 
properties, we now make a basic assumption. 

Assumption 1.3.  In this study we assume that for a # a ' ,  
S~"~c~S~"'~=~ and S = t )  A S ~uj. We also restrict ourselves to the case 
[S~"~[ = q/> 2, i.e., the subalphabets are nontrivial and of equal size. 

The assumption on disjointness implies that for any s � 9  S there is a 
unique a s.t. s �9 S ~'~, thereby ruling out the existence of ambiguous symbols. 
However, any rule with ambiguous symbols can be naturally extended to 
a rule without ambiguous symbols/6~ We do not expect the size difference 
of the subalphabets to introduce genuinely new interaction phenomena. 

Clearly all configurations generated from a single invariant sub- 
alphabet, i.e., X(")= S (")z (or the ones on half-integers) are invariant subsets 
of X (or X (t/z)) under F 2 and it seems appropriate to call them pure phases. 

Definition 1.4. Given /, r � 9  l ~ r ,  a configuration x � 9  s.t. 
x), �9 S "~ f o r j '  ~<j and .x), �9 S c~l f o r j '  > j  is said to have a boundary point at 
j +  1/2. The set of all such configurations is denoted by S~I~S~r~(j). 

In the case of a single boundary  point (as in this definition), its mot ion 
is under rather general conditions a random walk. The objective of this 
paper is to investigate the joint mot ion of an arbitrary number  of boundary  
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1380 Eloranta 

points between adjacent pure phases when in the absence of others they 
would be performing random walks. 

The contact interaction and transformation types of the boundary 
points are as follows. 

D e f i n i t i o n  1.5. Suppose that we have a boundary point IS(/Is�91 
s*"~ E S c'~, r v~ 1 at j. If J'(s tl~, s ~r~) ~ S "~ and c ~ {/, r }, the interaction is #zert 
and the boundary point moves in the next iteration of F either to the left 
or to the right by 1/2. If cr  {1, r}, the boundary point branches and we will 
have boundary points at j+__ 1/2 at the next iterate. Conversely, suppose 
that we have a block [s"~sl"~s crl] centered at the si tej  and c~ {1, r}, i.e., we 
have two adjacent boundary points at j +  1/2. Then if under F this block 
maps into [g,~gtrJ] and / =  r the boundary points annihilate. If 1-r r, they 
coalesce into a boundary point at j. 

For branching and coalescing we obviously need IAI >/3. 
As indicated in earlier empirical studies, t9'2~ it is quite natural to inter- 

pret a boundary point either as a "particle" moving on a background 
defined by a pure phase or as a "crack" between a phase and its shift. In 
our setup the type of a particle is defined by the subalphabets it borders. 
This in turn defines its relation to the other particles, i.e., the interaction 
algebra determining which collisions result in annihilation and which in 
coalescence into a particle of a third type as well as which particle types a 
given particle can branch into (see Fig. 2). 

2. THE PROTOTYPES 

We now define the detailed structure of the CA with the desired inter- 
action properties. The two basic ideas in this description are natural 
consequences of the CA being defined via a two-block rule. First by 
Definition 1.1 the CA rule as we define it is equivalent to a Cavley table or 
multiplication table on the symbol set S. Second this matrix naturally gives 
rise to a graph which supports a simple random process, which in turn 
determines all the properties of the boundary motion. 16~ In order to keep 
things simple, we first consider some examples, after which it should be 
clear how a more general class of examples is constructed. 

Example 2.1. Consider the Cayley tables in Table I indexed as 
matrices by $6=  {1,2, 11, 12,21,22} on the left and $9=  {1,2,3, !1, 12, 
13, 21, 22, 23} on the right. 

R e m a r k .  A 4 x 4  Cayley table with similar structure would be the 
simplest CA to exhibit nontrivial interaction dynamics: annihilations (but 
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1 2 1 12 21 2 
2 1 12 1 2 21 
I 12 11 12 11 22 

12 I 12 11 22 11 
21 2 11 22 21 22 

2 21 22 I1 22 21 

I 2 3 21 2 13 I1 2 23 
2 3 1 12 23 1 22 13 1 
3 I 2 3 11 22 3 21 12 

21 12 3 11 12 13 ! 12 23 
2 23 11 12 13 II  22 3 II  

13 1 22 13 11 12 13 21 2 
11 22 3 l 22 13 21 22 23 
2 13 21 12 3 21 22 23 21 

23 1 12 23 II  2 23 21 22 

no coalescings) between boundaries of two phases. The sizes of our 
examples are chosen to enable all possible interaction and transformation 
types to appear. 

Both tables correspond to a CA with three invariant subalphabets as 
indicated by the subsquares on the main diagonal. These are nonover- 
lapping matrices by Assumption 1.3 and of size 2 x 2 on the left and 3 x 3 
on the right. By examining the six off-diagonal subsquares in the Cayley 
table one concludes that the left automaton has inert interaction between 
the boundary points. Furthermore, their structure is such that given the 
appropriate independent initial distribution, each of the boundary motions 
generated is a standard unbiased random walk with i.i.d, increments (see 
Theorem 2.4). As indicated in Definition 1.5, the possible interactions are 
now annihilations and coalescings. An 80-step evolution on an 80-cell torus 
starting from an independent and uniformly distributed sample with sym- 
bols from $6 are shown in the upper left corner in Fig. l (time runs 
downward). Here 1 is white, l l is gray, and 22 is black and the remaining 
three symbols have a slightly different shade. 

The rule corresponding to the right matrix is potent: in the six off- 
diagonal 3 x 3 matrices the diagonal entries do not belong to the same 
subalphabets as the interacting symbols. Hence branching results at the 
corresponding boundary pair. However conditioned that the boundary pair 
avoids the subdiagonals, the rule again generates unbiased random walks 
with i.i.d, increments. The branching intensity (the frequency of branchings 
on a typical path) is 1/3. An 80-step sample is shown on the left in the 
middle row of Fig. 1 (initial configuration distributed as above with 
symbols from $9)..The rest of the illustration is explained in Section 3.1. 

In the case of multiple boundary motions a useful functional represen- 
tation of the interaction of the boundary point types is the graph on the left 
in Fig. 2. Here we denote S t~ simply by a, hence aa', a # a' stands for a 
boundary point between phases of type S ~ and S ~d~ ordered that way. 
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Fig. h Cellular a u t o m a t a  evolutions,  Toral  boundary  condit ion,  t ime runs downward .  Rules: 
Top  left, ,~c~ (see Example  2.1 ); top right, , ~ r  b = 1/9; center left and right, . ~ , ~ .  b = 1/3 
and  7/9: bo t lom row like the middle with special initial condi t ion (for details of  last five see 
Section 3.1 ). 
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Fig. 2. Transformation of the boundary point types. Left: branchings and coalescings; right: 
births and annihilations. 

The graph describes boundary point generation properties. For example, 
the arrow pair departing from 01 to 02 and 21 represent the branching 
potential of the corresponding boundary motion. So the inert CA in our 
first example corresponds to a completely disconnected graph on six ver- 
tices, while the other one is functionally like the graph on the left in Fig. 2. 
In the case of multiple subalphabets with different branching properties this 
representation can be used in ordering them as well as finding functionally 
equivalent CA. Transversing the same arrow pairs in the opposite direc- 
tions gives the recombination of types in coalescings. The graph on the 
right in Fig. 2 is a similar representation of another phenomenon, spon- 
taneous birth, in the case of two noninvariant subalphabets (for definition 
see end of this section). 

We now generalize these examples and formulate the classes of 
automata on which we concentrate for most of the paper. 

Let each s ~ S  ~'~ be represented by s =  (a, d), where d~D.  We call D 
the set of digits. By Assumption 1.3 we can choose D = { 1, 2 ..... q}. Let 

A_ = {A'~'~'I},~,,,,,EA• A and _Q = {Q'~'"'~},~.~',EA • A 

where A ~u'"'~ are q x q  matrices whose entries are in A. The array 
.4: A x A x D x D --, A is called the assignment matrix. Q"~'~ is a q • q 
matrix with entries in D, i.e. it is a Cayley table on the set of digits. For 
simplicity we will subsequently consider the case Q~'~'~=Q unless 
indicated otherwise. 

With these definitions the rule of the CA is given by f=f(_A,  _Q) such 
that for s = (a, d) and s '=  (a', d ')  

f ( s ,  s') = (A~""'~td, d'), Q"o'~(d, d ' ) )  

So if, for example, Al"'"'~(d, d ' ) e  {a, a'} for all a, a', d, d', then the rule is 
inert, whereas if we have r for some a, a', d, d '  the boundary between these 
symbols will branch. Note that the invariance of the subalphabets implies 
that Al"'"~(d, d ' ) E A  for all a, d, d'. 

The idea behind this formulation is the following. If we have a 
way of guaranteeing that the digit pair (d, d ')  in the boundary pair (s, s ' ) =  
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((a, d), (a', d')) is uniformly distributed & D • D, then with the assignment 
matrix we can, in a simple fashion, control the motion of the boundary 
point as well as its branching. 

To ensure the desired distribution property for (d, d'), the Cayley 
tables Q~O.~,~ must have a special structure. 

D e f i n i t i o n  2.1. A Cayley table Q on the set D is a quasigroup if in 
the equation Q(d~, d,_)= d3, die D, any two digits uniquely determine the 
third. 

The quasigroup structure obviously implies the permutivity o f f  on the 
subalphabets. A quasigroup does not need to be a group, nor does it have 
to have an identity. In the subsequent analysis we assume that Q is sym- 
metric, which does not restrict us to groups, but makes certain arguments 
more transparent. 

To generate the random walks, we introduce a random component in 
the form of the initial distribution, The notations /a s and /ao denote the 
uniform Bernoulli (product) measure on S z and D z, respectively. Let the 
measures on the Z +  l/2-1attice be denoted analogously with superindex 
(1/2). The mechanism responsible for propagating the randomness to 
future iterates is a certain Z2-action which we now describe. 

Let P be the global CA map that the permutive rule Q induces on the 
configurations generated from D. It preserves the appropriate measures, 
i.e., /ao=/a~/'-~P ~, i.e., the D z sequences will remain independent and 
uniformly distributed under P. The set of all possible infinite space-time- 
evolutions of P is a subshift of finite type which we denote by D ~2~. Let its 
horizontal and vertical coordinate shifts be trj, and a,.. The former is defined 
by (trhy)(j.i~ = YCj+ L,~, ) 'eDc2~, and the latter by ( 6 r ) ' J l j ,  il = .]'{j+ I/2. i+ I1' 
y e D  ~z~. Together they define a Z2-action a ~i'i~ by (./,i)F--*a~al.. By 
taking into account the measure preservation we obtain a dynamical 
system (D ~2~, a ~'~, /a~-'~) (the inverse limit~t4~). 

T h e o r e m  2.2.  The Z-'-action is mixing, i.e., 

lim /a~2~(tr~i'/~(A)t~B)=/al2~(A)/a~2~(B) 
I i l +  I/:1 ~ "~ 

for any measurable A, B e D  ~2~. 

The theorem has appeared in various forms, e.g., in refs. 12, 11, 
and 16. The interesting question from our point of view is whether the 
mixing property is good enough--will the underlying digit evolution which 
determines the jumps of the boundary point produce sufficiently weakly 
interacting motions so that they will retain their random walk character? 
We elaborate this question throughout the rest of the paper. 
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We are now ready to define the prototype assignment matrices and 
thereby the CA. Let q~ be the cyclic permutation 0 ~ t ~ 2 ~ 0. 

Def in i t ion  2.3. Suppose lAl = 2 or 3 and lDl >~ 2 is even. Let A ~~ 
be symmetric and such that half of each row is O's and half l's and let 
A(t '~ I~ If IAI = 3  define the rest of_A by 

A(~'(~176 i =  1,2, Vd, d ' e D  

By letting Q"" ' ) -~  Q, we define a class of symmetric CA rules which we call 
.~I~. 

R e m a r k s .  The name refers to the fact that for IAI = 2  these inert 
CA are capable of generating annihilating random walks and in the case 
IAI = 3 also coalescing ones. A checkerboard covering with O's and l's is a 
natural choice for A (~ Note that by the symmetry of A ('~, A is sym- 
metric, i.e., A~"'"')(d, d')=A~""~)(d ', d), hence by the symmetry of Q , f a l s o  
is symmetric. The matrix on the left in Table I is an example of .~/cg 
( Q =  Z2 and A(~ a checkerboard). 

The class generates good individual boundary motions. Let n~ and n2 
be the projections of a measure on X on A z and D z, respectively. 

T h e o r e m  2.4. Let the measure /.t be a measure supported on 
S(~ an integer or half-integer and n2/~=#o.  Given a rule in 
..~/c,K, the boundary point performs an unbiased random walk with i.i.d. 
increments and unit variance 1/4. 

Proof. Without loss of generality we can choose [AI=2.  Suppose 
that the defect at time i is at Ji- Consider the triangle Ti with vertices at 
(./i, i +  1) and (Ji--+ ( i+  1)/2, 0). Define the backward cone of the boundary 
pair centered at ji at time i to be the set T~\{ ( j ,  i+  1)}. The past 
of the walk at time i is clearly contained in this backward cone and 
the cone determines the next jump, i.e., value of the cell at (Ji, i+1) .  
Suppose that the walk jumps to the right, i.e., the cell at ( j ,  i +  I) is 
in S c~ We claim that given the backward cone at time i, the value of 
the neighbor at ( J i+  I, i +  1) is determined permutively by the entry at 
( j ,+  ( i+  3)/2, 0). This follows by noting that as ( j i +  ( i+  1)/2, 0 ) i s  now 
fixed, (j~ + ( i+  3)/2, 0) permutes (j, + (i + 2)/2, 1 ) and then iterating this 
argument i times. So the next jump is independent of all the previous ones. 
Moreover, as the digit at (j~+ ( i+3) /2 ,  0) is uniformly distributed, so is 
the digit at (./~+ 1, i +  1). By the column structure of A (~ in ,.~r the 
jumps to both directions take place with probability 1/2. Therefore the unit 
variance is simply 1 /2 ( -1 /2 ) - '+  1/2(1/2)2= 1/4. �9 
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R e m a r k .  More complex f arrays can be dealt with using a graph 
formulation. (6~ In order not to obscure the main points, we refrain from 
defining the most general analyzable classes here. 

D e f i n i t i o n  2.5. Suppose IAI = 3 and IDI >i 2 is odd. Let the set of 
branchings B = { (d, d ') l  A I~ d ' )  = 2 } be symmetric with respect to the 
diagonal of At~ contain it. Moreover, assume that the set B intersects 
each row at an odd number of entries. Let Al~ be antisymmetric off B, 
i.e., 

{ A ' ~ 1 7 6  for ( d , d ' ) r  

and let half of the elements on each row in the complement of B be O's (and 
half l's). Let All '~ ~~ The rest or the submatrices and Q are 
generated as in d ~ .  This class of CA is denoted by d ~ .  The branching 
intensiO, of the boundary motion is b = IB]/q 2. 

R e m a r k s .  Note that again the rule f,  i.e., the full Cayley table, is 
symmetric. Conditioned on not branching, the motion of the boundary 
point is as in Theorem 2.4. From the fact that (d, d ' )  is uniformly distri- 
buted in D x D and from the structure of A to.,~ it follows that the branching 
rate is simply the density of B in the off-diagonal submatrices. The matrix 
on the right in Table I is an example of a rule in sCNc~ ( Q - - Z 3  and the 
branching pairs B are on the diagonal in each A ~'"'1, a #- a'). 

In principle the class d ~ c g  can be used to generate arbitrarily potent 
random walk ensembles. 

Proposi t ion  2.6. Given any b ~ (0, 1 ] and e > 0 there exists a CA 
in ~ r  such that its branching rate is within e of b. 

Proof. For a given b pick q a multiple of 3 and such that 1/q <~ b and 
8/q'-<e. Form a 3qx3q  Cayley table in d ~ c s  such that in A ~~ the 
diagonal branches and the rest is an asymmetric checkerboard of 0 and 1. 
For this rule b =  1/q. To build a rule with larger b, start filling in the 
branching entries (in each A ~'~'~, a ~ a', i.e., staying in , ~ r  first around 
the diagonal symmetrically, each time adding 6/q 2. Once this is completed 
(in q/3 steps) continue flipping the remaining entries to 2 symmetrically in 
pairs of 2 x 2 squares, thereby increasing b by 8/q 2 at a time. Once only 
overlapping squares can be placed, add them in a symmetric way so that 
they cover one 0 and 1 in each row and column. This can be continued up 
to b = l .  II 

There are by no means all one-dimensional CA that generate good 
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defect gas dynamics, but rather prototype classes: It is perhaps appropriate 
to motivate some features by unveiling the "physical" ideas behind them. 

The basic physical assumptions we implemented in the prototypes 
w e r e :  

(i) Isotropy, i.e., left-right symmetry of the interaction between the 
subalphabets. 

(ii) The boundary motions should all be statistically identically iden- 
tical and only their types should differ. 

(iii) The individual boundary motions should be unbiased random 
walks with i.i.d, increments (and hence Markovian) and their character- 
istics, such as variance, branching rate, etc., should be computable. 

As noted in the remarks, all the tables are symmetric, hence (i) is 
satisfied. Since all the interaction matrices between two subalphabets 
A ~"'"'~, a 4: a', are generated from a seed table A~~ as elements of the orbit 
under the permutation 4, they will be equivalent in branching and inter- 
action properties. Of course we see this more directly from the proof of 
Theorem 2.4, which also shows that the choice of the distribution of 0's and 
l's in A ~~ in our classes guarantees a random walk of the type (iii). Note 
also that the permutation applied to the graph on the left in Fig. 2 yields 
an isomorphic graph. 

Before elaborating on the dynamics of the CA we will note one addi- 
tional feature of our design. By the invariance of the subalphabet S t"~ the 
diagonal assignment matrix A I"'"~ is constant. The violation of this, i.e., the 
existence of submatrices in the diagonal with A I"'"~ (d, d')v~a for some 
(,4, d'), amounts to the appearance of spontaneous births of twins, i.e., births 
of adjacent boundary points. The subsequent motions are of course still 
defined by the off-diagonal assignments together with the underlying digit 
dynamics. Since the diagonal blocks A "-'~ are not contributing to the 
characteristics of the boundary point motion, the distribution of the non-a 
entries is not relevant and the birth intensity is just the density of these 
entries in the submatrix. A prototype class, which we call , ~  (and could 
perhaps call Ising) exhibiting this phenomenon can be defined as follows: 
Suppose that ]AI =2,  [D[ is even, and that off-diagonal assignments are 
as sCcg. Let both matrices A ~"'"~ have density b of entries in the other sub- 
alphabet. Furthermore assume that at b =  1/2 the branching entries are 
distributed in such a fashion that the Cayley table becomes a quasigroup, 
i.e., every symbol appears on every row and column exactly once. This 
special condition will show its naturalness later. At this point we motivate 
it only by noting that the CA in class ~Ncg are defined in a similar way--  
at b = 1 their Cayley tables are quasigroups. 
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3. D Y N A M I C S  

We now present the analysis of the classes ,.4~, , ~ r  ,~/M, and some 
of their more general relatives which all satisfy Assumption 1.3. Their 
dynamics as it appears in simulations is first briefly reviewed. After that we 
compare it with appropriate probabilistic models and note the conserva- 
tion laws involved. The equilibrium properties pose some interesting 
problems which we report at the end. 

3.1. S imula t ions  

A series of computer simulations was first performed to confirm the 
qualitative behavior of the CA in the three prototype class as well as some 
rules outsides them and to measure the dependence of the dynamics on the 
parameters. The programs were written in Mathematica and run on a 
NeXTstation. In most simulations a toral universe maximum of 1000 cells 
in perimeter was initiated using a pseudorandom sample from an inde- 
pendent and uniform distribution on X. The length of the run was dependent 
on the birth/branching intensity--the lower the value of b, the longer the 
transient before equilibrium was attained. The range of runs was from 1000 
to 9000 iterates. Although the backward cones of course start overlapping 
eventually, the long runs did not seem to reveal noticeable dependences 
due to this. 

The critical finding was that the underl.ving quasigroup structure & a 
sufficient condition for random walks to retain their qualitative and quan- 
titative properties #7 the presence of  others. Our observations also strongly 
point toward it being a necessary condition. In its absence the random 
walk paths tend to corrupt to piecewise rectilinear motions, which indicates 
the existence of a measure concentrated on unidirectional cycles in the 
nodegraphsJ 61 The asymmetry of the underlying quasigroup(s) as well as 
the constancy of Q,,,o.I seemed irrelevant as anticipated. The assumptions 
on the assignment function _,51 guarantee a simple (Markovian) structure for 
individual walks and this seems to be preserved for ensemble in the quasi- 
group case. The cardinalities IDI and IA[ contribute as expected. The 
former influences the smoothness of the paths (the expected length of 
unidirected boundary pieces) and the latter just the number of boundary 
types available. 

To illustrate the dynamics we have included some generic samples in 
Fig. 1. The top four represent 80 • 80 evolutions from fully disordered state 
(/~s) on a toral universe. They are ordered from top left to middle right 
according to increasing branching rate, 0, 1/9, 1/3, and 7/9 respectively. 
The rules with b = 0  and 1/3 are the ones introduced in Example 2.1. The 
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former is in ~r and the later is in s~r All the branching rules have 
Q = Z3. The rule with rate 7/9 is also in d ~ c g ,  while the one with b = 1/9 
is just outside it (IDI = 3 implies b >/1/3 in ~ '9~g- -apa r t  from having two 
nonbranching entries on the diagonals of A I''"'~, the 1/9 rule satisfies the 
conditions in ~r The qualitative properties of the evolutions for 
automata with other values of b can be directly interpolated/extrapolated 
from these. 

In the bottom row of Fig. 1 we have a second sample of evolution for 
b = 1/3 and 7/9 to further illustrate the domain formation in the branching 
case. The initial state is such that exactly two defects are present in 
otherwise disordered phases (i.e., probabilities on symbols within each sub- 
alphabet are uniform Bernoulli). By averaging over an ensemble of such 
branching trees for a given b value one concludes that the boundaries drift 
out at the correct rate b/2. 

3.2.  P r o b a b i l i s t i c  A n a l y s i s  

The previous observations clearly suggest the existence of an attractor 
for the inert class ,~r and a nontrivial equilibrium measure for d,~c~ ' and 
.~'M. The structure of the attractor (candidate) is fairly easy to guess, as we 
will see, but to build a case for the latter we performed a series of runs 
cumulating data on the defect/particle density in a configuration and on 
the interparticle distance. These show a remarkably coherent picture under 
,__4 and Q variation. We now present these findings along side an inde- 
pendent model. 

Our model is defined on the same configuration spaces as our CA 
(X and X ~/2~ alternating). Consider four adjacent lattice sites. As usual, if 
neighboring cells are in different subalphabets, there is a defect between 
them. Suppose that the defects are independently and uniformly distributed 
with density (frequency) p and that the center boundary is a defect. 
Assuming that all defects (at most three in our block) move to the left or 
right independently with equal probabilities and branch independently with 
probability b, we compute the number of descendants of the center defect 
in one iterate. By including all possible defect interactions within the four- 
block, we essentially compute a Feynman diagram and as a result get the 
density of deaths and births per lattice site as functions of the branching 
intensity and density of defects. In the steady state the densities of births 
and deaths have to.match. The equilibrium solution of the defect versus the 
branching intensity is illustrated on the left in Fig. 3. See Appendix for 
details. The graph has several notable features, one of them being the fact 
that the value at b = 1, p = 2/3 is exact. This is a consequence of fact that 
this CA is permutive, thereby preserving the uniform Bernoulli measure. 
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Fig. 3. Equilibrium densities in the independent models corresponding to .~.SZ (left) and 
.e/~ (right). 

Hence the underlying independence assumption is satisfied. At b = 0 there 
is no mechanism to counter annihilations and coalescings and the 
asymptotic density should indeed be 0. Note the almost linear dependence 
on b at small values. 

The graph corresponds with reasonably good accuracy to the data 
from CA runs. At large values of b the equilibrium particle density is very 
close to the value given by the model. At b values in (0.1,0.6) the observed 
densities are within 5-15% of the ideal values. This seemed to hold for all 
sample CA independent of subalphabet size, quasigroup, and the particular 
distribution of the entries in the assignment function in ~ / ~ .  Even all 
examined assignment functions generating unbiased or minimally biased 
non-Markovian boundary motions (e.g., symmetric checkerboard off-B in 
A~~ in the branching case implies bias) given similar agreement with the 
model density p(b). In the (0, 0.1) range the transient times made the 
density estimates less reliable, but there was nothing to indicate vanishing 
of p(b) for some positive b, i.e., the existence of a nontrivial critical b value. 

An obvious source of error is the fact that if two boundaries are at dis- 
tance one from each other, then the probability that both branch may 
exceed b 2, the value in the independent case. This follows from the 
boundary pairs having a common digit. The mechanism does not plague 
boundary pairs further apart. 

To see the basic phenomena in the case of births instead of branchings 
we only need to consider the interaction of two subalphabets. The ideal 
case involves the same independence assumptions as above together with 
the assumption that the cell boundaries in pure phase give rise to births 
independently with intensity b. Again the equilibrium density is exactly 
solvable (see Appendix). Its graph is shown on the right in Fig. 3. Since 
flipping of a fraction b of the cells in a given pure phase is equivalent to 
flipping the fraction 1 - b  in the opposite phase, we see that the density 

must be symmetric with respect to b =  1/2. At small values, p ( b ) ~ 2  x/~. 
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The singularity of the derivative of p at 0 and 1 makes the comparison of 
the model to CA with birth mechanism somewhat unreliable at low and 
high birth rates. However, at the midrange of (0.2, 0.8) the observed match 
is comparable to that of the branching midrange. At the special value 
b = 1/2 the model is exact with p = 1/2. 

The interparticle distance at the equilibrium gives more detailed 
information about the stationary measure. It also indicates the non- 
Markovianity (with respect to the spatial shift a) of the measure when it 
is nontrivial, i.e., for parameter values b ~ 0  and 1 for d ~  and also 
b ~ 1/2 for d ~ .  In Fig. 4 we plot the logarithm of the density of the dis- 
tance distribution versus the interparticle distance at three different b levels. 
These are 1/3, 5/9, and 7/9, the first corresponding to the shallowest and 
the last to the steepest curve. Over one million defects were recorded for 
each curve and the tail of the distribution was cut at sample level one or 
at distance 40. The b values 1/3 and 7/9 correspond to the rules explained 
in Sections 2 and 3.1 and the third has the same quasigroup and with 
symmetric distribution of branchings in each A ~''''1 as required for the 
class ,4M~'. Again we believe that the forms of the graphs are generic, i.e., 
essentially independent of Q, etc. 

These data clearly indicate the non-Markovianity of the equilibrium 
measure. Suppose that the projection of the equilibrium measure on its first 
coordiniate, i.e., sequences in A z, is ergodic and Markovian (with respect 
to the shift tr). If p,, denotes the probability of a contiguous block of length 
n of any symbol from A (i.e., the probability of having two defects n apart), 
then p,,=p(1 -p}". Here p is as before 

Pr(defect at site j -  1/2)= Pr(sj r S'"~[sj_ , e  S "~) 

Fig. 4. 
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Equilibrium interparticle distance distribution for .e/.~'~6. Branching rates correspond- 
ing to the curves, shallowest to steepest, b = 1/3, 5/9, and 7/9. 
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for any subalphabet a. But then the logarithm of the distance density 
should be linear, which does not seem to be the case (see Fig. 4). 

The graphs suggest superimposition of at least two component dis- 
tributions. For b near 1 an exponential distribution dominates. In fact at 
b value 1 the interparticle distance is exactly exponential (as a consequence 
of the rule being permutative, hence Bernoulli measure being preserved). At 
lower b values large contiguous blocks of pure phase will emerge and when 
they do they will persist for some time, thus contributing to the distribution 
the component so notably absent in the b = 7/9 graph. 

The non-Markovianity of course points out a shortcoming in the com- 
putation of the densities in the beginning of the section. The independence 
assumption on the defect distribution is likely to have contributed to the 
deviation at low b values. 

3.2. Conserva t ion  Laws 

The main difficulty introduced in the transition from probabilistic 
particle systems to CA is that of conservation laws. They typically restrict 
the CA from having higher-order mixing properties, exponentially vanishing 
correlations, and similar useful properties. We now proceed to investigate 
these laws in our CA with the special goal of trying to understand why 
their total contribution to the dynamics does not seem to be proportional 
to their number. 

The nature of the digi t - leve l  conservation laws can be best understood 
by considering the basic case of Q --- Zp, p prime. Any single nonzero digit 
g at the origin surrounded by identity on Z u Z+ generates a Pascal's 
triangle modulo p rooted at g on the top. This set will contain rows having 
just two g's in them at heights (measured from the top) pk,  k>~O. 
Moreover, these triangles for arbitrary root digit can be superimposed, i.e,, 
added mod p. Hence for any .j and any i, k >/0 it holds that 

Q( dt i.il, d~ j + e~.i~) = dl j + ~/1.i + pk ~ 

Indeed the existence of this dependence is the reason for the digit evolution 
not being three fold mixing. ~t2'~ Note that although there is an infinite 
number of these laws, their size ( p k )  increases exponentially and requires 
the given exact geometric arrangement to prevail. 

If we consider time and distance l v spk we arrive at a more com- 
plicated dependence relation involving also some of the digits between dtj.i~ 
and d~j+t.il. This is a consequence of the fact that Pascal's triangle rooted 
at such digits can be nonzero at ( j+ / / 2 ,  i +  1). But the density of any 
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Pascal's triangle (in the forward cone) vanishes as its height approaches 
infinity. Hence also these conservation laws are rare for large/.  

The argument given here actually extends to other cyclic groups and, 
for example, to the Klein four-group. In the latter all nonidentity elements 
are of order two, so the argument for Z ,  applies. Indeed loops, i.e., 
quasigroups with identity, are argued similarly. 

Since our primary concern is the boundary motions we would like to 
know whether there are increment-level conservation laws. By this we mean 
relations between the increments ( jump directions) at distinct boundary 
points. This does not seem to happen in general, but it is possible that a 
digit-level conservation law lifts. The case in point is Q = Z 2 and an assign- 
ment as in class r i f t .  Consider an arrangement of boundary pairs centered 
at (j,i),  ( j + 2 k ,  i) and ( j + 2  k - l ,  i+2k) .  The reversal of the increment, 
say, at ( j + 2  k, i) is caused by permutation of the digits in this boundary 
pair. But any such permutation also permutes the digits of the boundary 
pair at ( j  + 2 k -~, i + 2 ~) (the third pair is fixed). Hence there is a permutive 
relation between the increments in three different locations. However, this 
relation breaks down for bigger Q's, since the permutation does not lift 
from digits then. And it does not seem to make CA with quasigroup Z2 
behave noticeably differently. 

The conservation laws seem to cause significant consequences only if 
the CA is computed on a toral lattice of the wrong size. To see this, 
consider again the digit evolution in the case Q = Z r, p prime. Let d~ be the 
density of nonzero digits in the ith row of the Pascal's triangle. Drops in 
di happen at time (heights) p, 2p ..... p_,, p2 + p . . . . .  p 3  . . . . .  From the structure 
of the Pascal's triangle we see that large decreases in the density occur 
when for some k/> 1, i/p* is a small integer. Indeed if i is a power of p, di 
is close to zero, as there are exactly two nonzero entries on these lines (the 
case considered in the beginning). 

A consequence of this is that if the perimeter of the torus T equals p* 
for some k the digit evolution from any initial sequence is identically zero 
from time i =  pk on, as the two digits alive in a Pascal's triangle rooted at 
any point of the initial configuration cancel each other. More generally, if 
pk for some k is a big divisor of T, the density fluctuations in the digit 
evolution are further amplified from the nontoral case. These torus sizes 
should obviously be avoided. 

3,3.  E q u i l i b r i u m  

In view of the design principles of the CA classes as well as the results 
above we now venture to formulate the equilibrium behavior of the 
automata as well as the convergence to it. 
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A deterministic CA typically has multiple invariant  measures. The 
simplest of the singular ones are supported by periodic points. Apart  from 
a few exceptions, these seem in general have a vanishing basin of at tract ion 
and therefore are not of physical importanc.e. If a rule has a nontrivial 
invariant subalphabet ,  the uniform Bernoulli measure on it is an invariant  
measureJ  5~ Very little seems to be known about  any other types of 
invariant measures. 

Once the trivial singular measures are excluded we expect the 
invariant measure characterizat ion in our setup to be as in analogous 
classical statistical mechanical  models. The omission is made by requiring 
that n_,#g is absolutely continuous (recall that  given a measure #g on X, rt_,#g, 
is the coordinate  projection on DZ). In the remaining set of measures we 
expect the rules in dog  to be nonergodic and the rules in d ~  and ~,~cr  
to be ergodic. Note  that  since the class ~,(c,g) can be viewed as the limit of 
the class ~ r  as the birth rate approaches  zero, the ergodic behavior  is as 
in the none-dimensional  Ising model. 

To be more precise, we define two properties of good initial measures #g: 

(i) #g = #gl#g x/1o. 

(ii) p(x) > 0 for #g-almost every x, where p stands for defect density. 

Assumption (i) guarantees ideal digit dynamics,  i.e., stationarity and 
maximal  obtainable mixing, and the product  form allows arbi trary defect 
distribution. The initial distribution of perhaps the main interest, the 
independent uniform measure on all symbols  (its), clearly satisfies both con- 
ditions. However,  it may be of interest to also consider "quenched/enhanced" 
initial measures where the defect density has been altered within (ii). 

Let #g" be the uniform Bernoulli on S " z  and recall that  the weak 
convergence of measures #g~ =:- it* just requires S f d#g i --* S f  d#g* for bounded 
and cont inuous f We let Fi#g stand for the measure defined as (FiIJ)(A)= 
/~(F-~A ). 

C o n j e e t u r o .  For  every F e ~ ' ~  and initial measure #g satisfy (i), 

F2"PP =~ #g* = E )~('*~I tla~ 
a E ,4 

for 2 I"~/> 0 and Z 2 I'~ = 1. I f / t  also satisfies (ii), then 
C 

p(F"(x)) (ruT)l n #g-a.s. 

where c =  IAl/2+e, lel small. 
For  every Fe,~C~cg there is an equilibrium measure  #g* (F2#g * =#g*) 

such that  F2"#g=,#g * for any It satisfying (i) and (ii). For  0 < b <  1 it is 
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a non-Markovian measure (with respect to the spatial shift o') with equal 
density of subalphabets and with defect density in (0, 2/3). 

For Fe~r176 and be (0 ,  1/2)u(1/2,  1) there exists an equilibrium 
measure #* such that F2"tt ~/~* for any/~ satisfying (i). The subalphabets 
appear with equal density and the defect density is in (0, 1/2 ). 

R e m a r k .  The analogous statements obviously should hold for odd 
iterates, but we refrain from spelling them out, to avoid the extra indices. 

Several points are in order to motivate and support the Conjecture. 
We also want to connect it to finding elsewhere. 

The attractor in the class ~cg should simply be A* = U~A SIo~z. The 
weights 2 ~"~ and c in the Conjecture reflect the representation of the 
subalphabets in the initial measure, i.e., nonergodicity. In the even case 
(e.g., /Is) one expects 2 I l -  I/IAI and c~3/2. The latter assumes equal 
probabilities for annihilations and coalescings in recombinations. In case 
just two subalphabets are present, only annihilations take place and c .~ 1. 
Experimentally the bound for deviation e is very small but hard to estimate 
reliably because of the slow convergence. Even in the case of biassed 
random walks the attractor should still be contained in A* and the limit 
measure be of the given form. Due to the (standard) topology of the space 
(X, d) and the expected recurrence of the boundary motions the attraction 
is only in the mean, i.e., t l/n~ g"n-ld(F2ix, ,4*)~ 0 /~-almost surely [use, ~. / ; L . . . , i = 0  

e.g., the metric d(x, x)=0,  d(x, y ) =  2 -m~~162 j '~-, 'l  on X]. 
For independent annihilating walks with independent exponentially 

distributed jumps a related result has been proved and should match our 
special case of two subalphabets/x~ If the sequences from D z under itera- 
tion of P were independent of each other a similar approach should work 
here. But by Theorem 2.2 the digit sets are just asymptotically independent. 
Indeed they are not 3-mixing, because of the conservation laws, but 
nevertheless the mixing rate is quite good and the resulting correlations 
(and length scale) are extremely small. 

We also note that the first part of the Conjecture is closely related to 
Lind's conjectures on the elementary cellular automaton 18.1131 The rule 18 
has permutivity properties completely explaining the individual random 
walks observed and the collective behavior seems to be that indicated in 
the Conjecture/7'41 Indeed 18 has a quasigroup structure much the same as 
the rules in class ~r To see this we present the Cayley table of 18 on the 
left in Table II. 

The coding is 0=00 ,  1=01,  etc., in terms of the original binary 
alphabet. The invariant subalphabets are SC~= {0, 1} and S~2~= {0,2}. 
Clearly f ( s  ~l~, s t2~)e U~s ~ " ~ S ~ .  If the order of the subalphabets is 
reversed, we can get the symbol 3, but this is a redundant symbol. Its 

~22/76/5-6-20 



1 3 9 6  E l o r a n t a  

Table II 

0 1 2 2 0 1 0 2 
0 1 2 

1 0 0 0 1 0 1 0 
2 3 0 0 1 0 0 0 1 0 2 
1 0 0 0 2 0 0 2 0 2 0 

appearance is avoided if the coding is started at odd location of Z instead 
of even ones. So the defects in 18 behave as in the CA with the table in the 
center. Furthermore, the ambiguity in the symbol 0 can be disposed of by 
defining a new symbol 0 for S c2~ (this has no effect on the defect dynamics). 
The resulting table is on the right. The underlying quasigroup is clearly Z2. 
Although the assignment function is not as required in ~r162 the subalphabets 
are evenly represented in A 1~'2~ and A ~2'~ and an unbiased Markovian 
random walk prevails from the natural initial measure (as in Theorem 2.4). 

The branching/birth mechanism in ~ r  makes the existence of 
a nontrivial equilibrium measure intuitively obvious. Note that because of 
the types of its offspring, a branching boundary cannot ever self-annihilate 
to extinction. 

The nontrivial structure of/~* conforms with earlier finding where the 
inert annihilating case with all independence assumptions was studied. ~1 
There it was shown that the defect distance at time n scaled by x/~ does 
not converge to an exponential limit distribution. This corresponds to our 
finding on the increasingly non-Markovian nature of/~* in the limit b---, 0. 

Finally we remark that the cases b = 1 for ar and b = 1/2 for ~r  
are left out of the Conjecture since they are the only ones fully understood. 
The Cayley tables for these parameter values are quasigroups, the uniform 
Bernoulli measure on all of X is preserved, and the natural extensions of 
the CA are Bernoulli, i.e., maximally chaotic. Because of the measure 
preserved, the interparticle distance is exponential with mean 3/2 in aC#ff  
and 2 in ar  

A P P E N D I X  

The reference models of Section 3.2 assume that all the probabilistic 
mechanisms in the ensemble are independent of each other and of the'past. 
So the increments of the defects are independent of the past of the ensemble 
and independent of each other up to the time of annihilation or coalescing. 
Similarly the branching or births are independent of the past, each other, 
and the increments. 

Let p be the density of defects. With probability p we have a defect 
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at any given site. To obtain the density of defects after one iterate we 
consider a block of four cells centered at a defect. In the case of ~r the 
defect can jump by _ 1/2 or branch. The offspring may annihilate or 
coalesce with neighboring defects if any are around. We compute the 
expected number of offspring by the center defect in one iterate after its 
interactions have been taken into account. For example, if in the case of 
three defects the center defect branches, the others move inward, and one 
of the children coalesces while the other annihilates, the number of off- 
spring is 1/2 (as the child is parented by two defects). Given the density of 
defects, we can calculate the probability of this event to be p3b( l -b )2 /8 .  
Note that the center defect could not interact with any nonneighboring 
defects in one iterate. Accounting for all possible events gives the updated 
defect density, which has to agree with p at the equilibrium. The argument 
can be further refined by taking into account the events where a branching 
is followed immediately (in one iterate) by a coalescing. With some com- 
putation this analysis leads to the equation 

(b( - 5 - 4 b  + 9b2)'~ 2 + ( -  3 - 2b + 5b2-12b3.) 
-4 )P 2 P 

+ b(3 - 2b + 3b 2) = 0 

The nonnegative solution to this is the curve plotted on the left in Fig. 3. 
The contribution of the refinement is quite small--i t  just thins the distribu- 
tion at the low end. 

The case of births is dealt with similarly, but now without assuming 
that there necessarily is a defect in the center of a four-block of cells. We 
still count the number of offspring of the center (defect or not) and arrive 
at the equilibrium equation 

[4b(l - b ) -  1] p 2 _ 8 b ( l  - b ) p + 4 b ( l  - b ) = O  

Again there is only one physically meaningful solution, which is plotted in 
Fig. 3, right. 
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